Dynamic Logic of Product Relation Changers

Ryo Hatano¹ Pimolluck Jirakunkanok²
Katsuhiko Sano³

¹Tokyo University of Science, Japan

²Independent Researcher, Thailand

³Hokkaido University, Japan

DaLi2025 @ Shaanxi Normal University 21st Oct. 2025

State-deletion vs Link-deletion

- Two primary approaches for handling agents' knowledge & belief change.
- State-deletion (or domain restriction)
 - PAL (Plaza, 1979)
 - DEL (Baltag et al., 1998)
- Link-deletion (or accessibility change)
 - PAL (Gerbrandy & Groeneveld, 1997)
 - AUL & GAUL (Kooi & Renne, 2011)
 - DLRC (van Benthem & Liu, 2007)
- In this talk, we focus on a link-deletion approach!

Link-deletion Approach

" PAL "-style	AUL (Kooi & Renne, 2011)	DLRC (van Benthem & Liu, 2007)
" DEL "-style	GAUL (Kooi & Renne, 2011)	?

- Arrow Update Logic restricts a's accessibility to the one from φ -worlds to ψ -worlds.
- Dynamic Logic of Relation Changers changes a's accessibility by a program in iteration-free PDL.
 - Generalizes AUL.
- Generalized AUL expands AUL with action models and has the same expressivity as DEL.

Motivation

We integrate the notions of relation changers and action models within a unified framework.

PRC: Dynamic logic of product relation changers

- generalizes both relation changers & (generalized) arrow updates.
- has sound & complete axiomatization (inside-out strategy using recursion axioms).
- also has cut-free labelled sequent calculus.

Outline

- Dynamic Logic of Relation Changers (DLRC)
- Dynamic Logic of Product Relation Changers (PRC)
- Labelled Sequent Calculus for PRC

Outline

- Dynamic Logic of Relation Changers (DLRC)
- Dynamic Logic of Product Relation Changers (PRC)
- Labelled Sequent Calculus for PRC

Syntax for **DLRC**

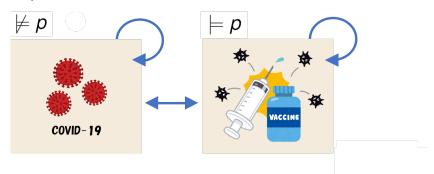
Language \mathcal{L}^+ for **DLRC** (= iteration-free **PDL** + relation changers r):

$$\begin{aligned} \mathsf{FORM}_{\mathcal{L}^{+}} \ni \varphi & ::= p \mid \neg \varphi \mid (\varphi \to \varphi) \mid [\alpha] \varphi \mid [r] \varphi, \\ \mathsf{PR}_{\mathcal{L}^{+}} \ni \alpha & ::= a \mid (\alpha \cup \alpha) \mid (\alpha; \alpha) \mid ?\varphi, \\ \mathsf{RC}_{\mathcal{L}^{+}} \ni \mathsf{r} & ::= (a := \alpha_{a})_{a \in \mathsf{AP}}, \end{aligned}$$

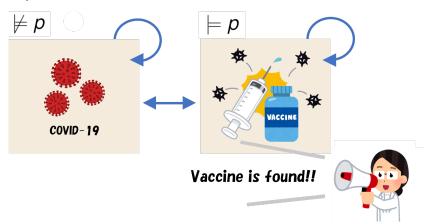
where $p \in \mathbf{P} \& a \in \mathbf{AP}$ (atomic programs).

- $[r]\varphi$: "After changing an accessibility relation for each program a by α_a , φ holds."
- We also use r(a) to mean α_a .

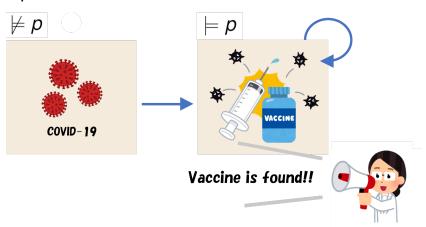
Introspective Ann. $[r_{!p}]$ (van Ditmarsch et al. 2007) Let p be "COVID-19 vaccine is available."



Introspective Ann. $[r_{!p}]$ (van Ditmarsch et al. 2007) Let p be "COVID-19 vaccine is available."



Introspective Ann. $[r_{!p}]$ (van Ditmarsch et al. 2007) Let p be "COVID-19 vaccine is available."



$$\mathsf{r}_{!p} = (a := a; ?p)_{a \in \mathsf{AP}}$$

Other Examples of Relation Changers

Atomic Programs Exchange: Let $AP = \{a, b, c\}$.

$$r := (a := b, b := c, c := a).$$

Preference Upgrade:

$$\mathsf{r}_{\sharp arphi} := (\mathsf{a} := (? \lnot arphi; \mathsf{a}) \cup (\mathsf{a}; ? arphi))_{\mathsf{a} \in \mathsf{AP}}$$

Arrow Updates: Let $U \subseteq FORM_{\mathcal{L}} \times AP \times FORM_{\mathcal{L}}$.

$$\mathsf{r}_{*U} := \left(oldsymbol{a} := igcup_{(arphi, oldsymbol{a}, \psi) \in U} (?arphi; oldsymbol{a}; ?\psi)
ight)_{oldsymbol{a} \in oldsymbol{\mathsf{AP}}}$$

Semantics for **DLRC**

```
Given any \mathfrak{M} = (W, (R_a)_{a \in AP}, V) \& any w \in W,
   \mathfrak{M}, w \models [\alpha] \varphi iff \mathfrak{M}, v \models \varphi for all v with wR_{\alpha}v,
                     iff wR_{\alpha}v or wR_{\beta}v,
   wR_{\alpha\cup\beta}v
   wR_{\alpha:\beta}v
                    iff wR_{\alpha}u and uR_{\beta}v for some u \in W,
                   iff w = v and \mathfrak{M}, v \models \varphi,
   wR_{?_{\omega}}v
   \mathfrak{M}, \mathbf{w} \models [\mathbf{r}]\varphi \quad \text{iff} \quad \mathfrak{M}^{\mathbf{r}}, \mathbf{w} \models \varphi,
where \mathfrak{M}^{r} = (W, (R_{a}^{r})_{a \in AP}, V) and
```

 $R_a^{\rm r} := R_{\rm r(a)}$ where recall that ${\rm r}(a)$ is a program.

van Benthem & Liu 2007

There is a complete axiomatization of **DLRC**.

Outline

- Dynamic Logic of Relation Changers (DLRC)
- Dynamic Logic of Product Relation Changers (PRC)
- Labelled Sequent Calculus for PRC

Action Model for Public Ann. of φ

$$\mathbb{E} = (\mathsf{E}, (\mathsf{Q}_a)_{a \in \mathsf{AP}}, \mathsf{pre})$$

• Let $E = \{e\}, Q_a = \{(e, e)\}, \text{ and } pre(e) = \varphi.$

What is a single event "action model" of one relation changer r, say, preference upgrade $r_{\sharp \omega}$?

Action Model for Preference Upgrade

$$\mathbf{r}_{\sharp \varphi} := (a := (? \neg \varphi; a) \cup (a; ? \varphi))_{a \in \mathbf{AP}}$$

$$\mathbb{E} = (\{e\}, (\{(e, e)\})_{a \in \mathbf{AP}}, ?_1, ?_2)$$

- $?_2$ should capture program constructions $r_{\sharp \varphi}(a)$.

Action Model for Preference Upgrade

$$\mathbf{r}_{\sharp \varphi} := (a := (? \neg \varphi; a) \cup (a; ? \varphi))_{a \in \mathbf{AP}}$$

$$\mathbb{E} = (\{e\}, (\{(e, e)\})_{a \in \mathbf{AP}}, ?_1, ?_2)$$

- $[?_1]$: a generalization of pre should include both φ and $\neg \varphi$. $\rightsquigarrow \text{CND}(e) = (\varphi, \neg \varphi)$.
- $?_2$ should capture program constructions $r_{\sharp\varphi}(a)$.

$$ightharpoonup \operatorname{rel}_a(\mathsf{e},\mathsf{e}) = (\neg \varphi;a) \cup (a;\varphi).$$

Modified Action Model

$$\mathbb{E} = (E, (Q_a)_{a \in AP}, (CND(e))_{e \in E}, (rel_a)_{a \in AP})$$

- CND(e): a finite list of formulas (generalization of preconditions).
- rel_a: sends each $(e, f) \in Q_a$ to a program $\alpha_{(e, f)}$ s.t.

$$\alpha_{(e,f)} ::= b \mid ?\varphi_e \mid ?\varphi_f \mid (\alpha \cup \alpha) \mid (\alpha; \alpha),$$

where $b \in \mathbf{AP}$, $\varphi_e \in CND(e)$, & $\varphi_f \in CND(f)$. We also use $\alpha_{(a,e,f)}$ to mean $rel_a(e,f)$.

Syntax for **PRC**

```
Language \mathcal{L}^{\otimes} for PRC (= iteration-free PDL + modified action models \mathbb{E}):
```

```
\begin{aligned} \mathsf{FORM}_{\mathcal{L}^{\otimes}} \ni \varphi & ::= p \mid \neg \varphi \mid (\varphi \to \varphi) \mid [\alpha] \varphi \mid [\mathbb{E}, \mathsf{e}] \varphi, \\ \mathsf{PR}_{\mathcal{L}^{\otimes}} \ni \alpha & ::= a \mid (\alpha \cup \alpha) \mid (\alpha; \alpha) \mid ?\varphi, \\ \mathsf{AM}_{\mathcal{L}^{\otimes}} \ni \mathbb{E} & ::= (\mathsf{E}, (\mathsf{Q}_a)_{a \in \mathsf{AP}}, (\mathsf{CND}(\mathsf{e}))_{\mathsf{e} \in \mathsf{E}}, (\mathsf{rel}_a)_{a \in \mathsf{AP}}), \end{aligned}
```

where $p \in \mathbf{P}$, $a \in \mathbf{AP}$ and \mathbb{E} is a modified action model.

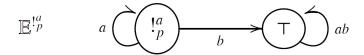
Semantics for PRC

```
Given any \mathfrak{M} = (W, (R_a)_{a \in AP}, V) & any w \in W,
                     \mathfrak{M}, \mathsf{w} \models [\mathbb{E}, \mathsf{e}] \varphi \text{ iff } \mathfrak{M}^{\otimes \mathbb{E}}, (\mathsf{w}, \mathsf{e}) \models \varphi,
where \mathfrak{M}^{\otimes \mathbb{E}} = (W^{\otimes \mathbb{E}}, (R_a^{\otimes \mathbb{E}})_{a \in \mathsf{AP}}, V^{\otimes \mathbb{E}}) and
                                          W^{\otimes \mathbb{E}} := W \times E.
                 (w,e)R_a^{\otimes \mathbb{E}}(v,f) iff wR_{\alpha_{(a,e,f)}}v and eQ_af,
                (w, e) \in V^{\otimes \mathbb{E}}(p) iff w \in V(p),
                                                         recall that \alpha_{(a,e,f)} := rel_a(e,f).
```

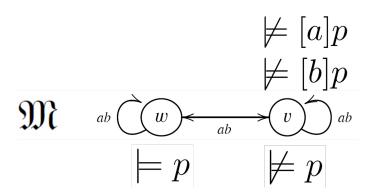
Private Announcement $[!^a_{\omega}]$

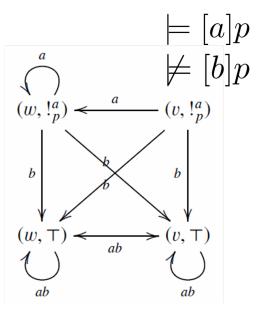
"a alone was privately told that p."

Let
$$AP = \{ a, b \}.$$



- $CND(!^a_p) := p$ and $CND(\top) := \top$,
- $rel_c(e, f) := c$; ?CND(f) for all $(e, f) \in Q_c$.





Hilbert System HPRC

Hilbert system of iteration-free PDL (Harel et al. 2000) and:

```
([\mathbb{E}, e]at) [\mathbb{E}, e]p \leftrightarrow p
([\mathbb{E}, e] \neg) [\mathbb{E}, e] \neg \varphi \leftrightarrow \neg [\mathbb{E}, e] \varphi
([\mathbb{E}, e] \rightarrow) [\mathbb{E}, e](\varphi \rightarrow \psi) \leftrightarrow ([\mathbb{E}, e]\varphi \rightarrow [\mathbb{E}, e]\psi)
([\mathbb{E}, e][a]) [\mathbb{E}, e][a]\varphi \leftrightarrow \bigwedge_{f \in O_2(e)}[\alpha_{(a,e,f)}][\mathbb{E}, f]\varphi
([\mathbb{E}, e][\cup])
                            [\mathbb{E}, e][\alpha \cup \beta]\varphi \leftrightarrow [\mathbb{E}, e][\alpha]\varphi \wedge [\mathbb{E}, e][\beta]\varphi
([\mathbb{E}, e][:]) [\mathbb{E}, e][\alpha:\beta]\varphi \leftrightarrow [\mathbb{E}, e][\alpha:\beta]\varphi
([\mathbb{E}, e][?]) [\mathbb{E}, e][?\psi]\varphi \leftrightarrow [\mathbb{E}, e](\psi \rightarrow \varphi)
(Nec_{\mathbb{E},el})
                                From \varphi, infer [\mathbb{E}, e]\varphi
```

We can also derive recursion axioms for GAUL.

Completeness of HPRC

Theorem

 φ is a theorem of HPRC iff φ is valid on all models.

(:·) By reducing the completeness of HPRC to that of iteration-free PDL via recursion axioms.

Outline

- Dynamic Logic of Relation Changers (DLRC)
- Dynamic Logic of Product Relation Changers (PRC)
- Labelled Sequent Calculus for PRC

 $VAR = \{x, y, \dots\}$: a countably infinite set of variables.

$$X:\varphi$$

"A formula φ holds at state x"

$$xR_{\alpha}y$$

"There is an α -link from x to y" $(\alpha : program)$

$$x = y$$

"State x equals state y"

Labelled Formalism for PRC

 $VAR = \{x, y, ...\}$: a countably infinite set of variables.

$$X:^{((\mathbb{E}_1,e_1),...,(\mathbb{E}_n,e_n))}\varphi$$

$$(x,((\mathbb{E}_1,e_1),\ldots,(\mathbb{E}_n,e_n)))\mathsf{R}_{\alpha}(y,((\mathbb{E}_1,f_1),\ldots,(\mathbb{E}_n,f_n)))$$

$$x = y$$

Labelled Sequent Calculus GPRC

A sequent is a pair (Γ, Δ) of

finite multisets of labelled expressions in PRC.

$$\Gamma \Rightarrow \Delta$$

"if all of Γ hold, then some of Δ holds"

Based on these definitions, we define rules of labelled sequent calculus GPRC.

Features of GPRC

- It can be regarded as a natural generalization of GDLRC for DLRC. (H. et al., 2016)
- Equality rules are adopted from (Seligman, 2001) for hybrid logic.
- The following are key theorems:

If φ is a theorem of G**PRC**, then φ is valid on all models.

All theorems of HPRC are also theorems of GPRC.

Cut-elimination holds for GPRC.

Conclusion

"PAL"-style	AUL (Kooi & Renne, 2011)	DLRC (van Benthem & Liu, 2007)
" DEL "-style	GAUL (Kooi & Renne, 2011)	Our work!

Main Theorem

TFAE:

- \bullet φ is valid on all models,
- $\mathbf{Q} \varphi$ is a theorem of H**PRC**,
- $\odot \varphi$ is a theorem of GPRC,
- \bullet φ is a theorem of GPRC w/o (Cut).

Further Directions

- Explore relationship between General Dynamic Dynamic Logic (Girard et al., 2012) and PRC.
- Investigate an alternative semantics of PRC (cf. update universe by (van Benthem, 2014)).
- Constructive generalization of PRC.

Thank you!